Hybrid-Hydrogels Comprising Clickable Decellularized Extracellular Matrix

Date: 7/1/2020

Fibrotic disorders, including pulmonary fibrosis, account for over one-third of mortalities worldwide. Strong evidence indicates that cell-matrix interactions drive the progression of fibrosis - the formation of scar tissue. Yet it is not clear whether changes in matrix composition or the subsequent alterations in mechanical properties of the tissues are the more potent driver of fibrosis, i.e., the best target for therapeutics.

The Magin Lab in collaboration with Dr. Darcy Wagner at Lund University has invented a method for incorporating proteins from decellularized lung tissues into dynamically tunable hybrid-hydrogels to recreate this remodeling and study it in vitro.

Lab members working on this project:
  • Rukshika Hewawasam, PhD (Bioengineering Postdoctoral Fellow)
  • Pete Serbedzija, PhD (PRA)
Collaborators:
  • Darcy Wagner, PhD, Lund University, Sweden
  • Daniel Weiss, MD, PhD, University of Vermont
  • Kurt Stenmark, MD, University of Colorado, Anschutz Medical Campus
  • Ginger Ferguson, PhD, University of Colorado, Boulder

Funding sources:
      

College of Architecture and Planning

CU Denver

CU Denver Building

1250 14th Street

2000

Denver, CO 80202


303-315-1000

CMS Login